
Snort IDS system visualization interface
Nadja Gavrilovic, Vladimir Ciric, Nikola Lozo

University of Nis, Faculty of Electronic Engineering, Nis, Serbia

Abstract—Over the past decades, the rapid Internet develop-
ment and the growth in the number of its users have raised
various security issues. Despite numerous available security tools,
the exchange of data over the Internet is becoming increasingly
insecure. For this reason, it is of great importance to ensure the
security of the network in order to enable the safe exchange
of confidential data, as well as their integrity. One of the most
important components of network attack detection is an Intrusion
Detection System (IDS). Snort IDS is a widely used intrusion
detection system, which logs alerts after detecting potentially
dangerous network packets. The next step in successful network
protection is the analysis of logged alerts in search of deviations
from normal traffic that may indicate an intrusion. The goal of
this paper is to design and implement a visualization interface
that graphically presents alerts generated by Snort IDS, classifies
them according to the most important attack parameters, and
allows the users to easily detect possible traffic irregularities. An
environment in which the system has been tested in real-time is
described, and the results of attack detection and classification
are given. One of the detected attacks is analyzed in detail, as
well as the method of its detection and its possible consequences.

Index Terms—IDS, snort, network intrusion detection, visual-
ization interface

I. INTRODUCTION

Recent technological advances have led to the use of tech-
nology in very important areas, such as e-commerce, banking,
insurance, health systems, etc. The unlimited possibilities of
the Internet and the ease of communication also bring a
significant risk of various attacks on users and their data.
One of the primary requirements of network users has become
the design of a secure network infrastructure that will enable
safe data transmission and storage. Despite the existence of
different systems for detecting and preventing attacks, the
problem is still present today. Malicious attacks are becoming
more sophisticated, which makes their detection even more
difficult [1], [2].

Within large companies and organizations, the danger comes
not only from the outside network, but also from the inside,
sometimes by employees who can use their access for ma-
licious purposes, but even more often as a result of social
engineering attacks.

Intrusion detection is a technique of detecting unauthorized
access to a computer system or a computer network. An

Nadja Gavrilovic is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-
mail:nadja.gavrilovic@elfak.ni.ac.rs).

Vladimir Ciric is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-
mail:vladimir.ciric@elfak.ni.ac.rs).

Nikola Lozo is with the Faculty of Electronic Engineering, University of
Nis, Aleksandra Medvedeva 14, Nis, Serbia (e-mail:nikolalozo@elfak.rs).

intrusion into a system can be defined as an attempt by an
intruder to bypass the security mechanisms of a computer or
network and illegally gain access. Also, intrusion often has the
intention of compromising the CIA (Confidentiality, Integrity
and Availability). An intrusion detection system (IDS) is a
system used to address the problem of intrusions by moni-
toring the events occurring in a computer system or network,
analyzing them and detecting unauthorized intrusions [1], [3].

IDSs are often classified based on the scope of monitoring
and type of data analyzed, into host-based IDS (HIDS) and
network-based IDS (NIDS). Host-based intrusion detection
systems monitor the characteristics of a single host and the
events occurring within it. They analyse process identifiers,
the system calls they make and operating system specific
logs (including system, event, and security logs on Windows
systems and syslog in Unix environments), in order to detect
evidence of suspicious activity. On the other hand, network-
based intrusion detection systems have the whole network
as the monitoring scope. They are responsible for detecting
network traffic that may be considered unauthorized and
harmful [3], [4].

One of the most widely used network intrusion detection
systems is Snort IDS. Its simple configuration and efficiency
make it the preferred option in most environments in need of
protection [4]. Snort is often the subject of various research
in the field of network security. Recently, there have been
numerous papers studying the implementation of Snort in
different environments [5], [6]. Also, many authors have
studied ways to improve the network attack detection rate of
the Snort intrusion detection system [7], [8].

In most environments, Snort IDS is configured to log
alerts after detecting potentially dangerous network packets.
Successful network protection involves a detailed analysis of
recorded alerts in search of deviations from normal traffic
that may indicate an intrusion. The goal of this paper is to
design and implement a visualization interface that graphically
presents alerts generated by Snort IDS. The implemented sys-
tem allows the users to visually analyze generated traffic logs.
Furthermore, it shows the most common source addresses,
classes and dates of attacks, as well as the most common
alert priorities. Such traffic analysis makes detecting possible
network irregularities quick and straightforward. The results of
real-time attack detection and classification in an appropriate
environment are shown in detail. An example of an attack is
analyzed, as well as the method of its detection and its possible
consequences.

There are popular network visualization solutions [9], but

all of these solutions are too robust and require the whole
stack. Our motive was to make a light-weight solution for
environments where there is no need for the whole stack.

The paper is organized as follows. Section 2 gives a brief
introduction to intrusion detection systems in general, and the
Snort IDS. Section 3 is the main section and presents the
design and architecture of the proposed Snort IDS system
visualization interface. In Section 4 the implementation results
will be presented, while the concluding remarks are given in
Section 5.

II. BACKGROUND ON IDS AND SNORT

Based on the technique used to assess the network packets
as regular or malicious, IDSs can be classified into signature
(or pattern) matching and anomaly-based IDSs. Signature-
based systems use the detected properties of previous attacks
for detection. A signature is a pattern of a known attack or
threat, which is previously identified and stored in a database.
Pattern matching IDSs compare network traffic to malicious
attempt patterns in order to recognize possible intrusions.
Signature-based detection is very effective at detecting known
threats but can experience problems with detecting new and
previously unknown threats [1], [10].

Anomaly-based detection is the process of comparing net-
work traffic and observed events against the definitions of
the activity that is considered normal in order to identify
significant deviations. A network traffic anomaly is considered
to deviate from known traffic behavior so significantly, that
it raises the suspicion of being a malicious attempt. These
systems are capable of detecting zero-day attacks, but with a
drawback of possible false positives [1], [3], [10]. Also, in
recent IDS systems, artificial intelligence is often used, most
often in conjunction with the aforementioned techniques, in
order to further improve system detection [11].

In terms of NIDS components, a typical NIDS gathers data
from the network, distributes it to the network sensors and
further to network analyzers, which classify data as either
safe or malicious and determine the threat level. NIDS also
includes an alert notifier, which generates on-screen, audible or
e-mail alerts, SNMP messages, etc. Furthermore, the command
manager is a component that acts as a central command
authority. Database servers usually include both behavioral and
misuse statistics and other data [3].

Most NIDS implementations use multiple sensors, which
have to be carefully placed on the key points of the network.
They can be deployed in one of two modes. An inline sensor is
deployed so that the network traffic it is monitoring must pass
through it. They are typically placed at the network border.
A passive (tap) sensor is deployed so that it monitors a copy
of the actual network traffic. They typically monitor network
traffic from the key network locations [10]. In this paper,
we will focus on pattern matching based IDSs, which have
a network sensor configured in passive (tap) mode.

Snort is a widely used, highly configurable and portable,
open-source network intrusion detection system based on
pattern matching. Snort is easily deployed on a variety of

network nodes. Also, its operation is efficient and does not
take much memory and processor time [4]. Snort uses a set of
signatures, which define what constitutes an attack and thus
enable detection of attacks and malicious activities. Snort’s
signature sets are called Snort rules. A rule is formally defined
as [7]:

<rule action><protocol><source ip><source
port><direction><dest ip><dest port><rule options>

Rule action field defines the type of Snort rule (alert, log,
drop). The most common are alert rules, which store alert
data for further analysis and later retrieval. The rest of the
fields describe the main attributes of network packets. The
rule options field defines one or more key-value pairs that
further describe the rule (class type, msg, flags, etc.). Defining
classifications for rules provides a way to better organize the
event data Snort produces. Each rule also assigns priority to
the alert, according to the alert class. A priority of 1 (high)
is the most severe and 4 (very low) is the least severe [7].
Example of a Snort rule:

Alert tcp $EXTERNAL NET any ->$HOME NET any (msg:
’SCAN SYN FIN’ flags: SF, 12; reference: arachnids, 198;

classtype: attempted-recon;) [4].

The main components of Snort architecture are given in Fig. 1.
The packet sniffer collects network traffic and directs it to the
decoder, which processes each captured packet to identify and
isolate protocol headers at the data link, network, transport,
and application layers. The actual intrusion detection is done
in the detection engine unit. This module analyzes each packet
and checks it against all of the rules. The first rule that matches
the decoded packet triggers the action specified by the rule.
For each packet that matches a rule, the rule specifies what
logging and alerting options are to be taken [4].

Fig. 1. Snort Architecture

III. SYSTEM OVERVIEW

The proposed Snort IDS system visualization interface is
implemented as a client-server application, which structures
and graphically presents traffic alerts logged by Snort. The
proposed interface allows users to visually analyse the traffic
logs and easily detect deviations from normal traffic that may
indicate an intrusion.

In order to demonstrate and evaluate the proposed solution,
the Snort visualization interface has been integrated into the
system whose components are given in Fig. 2. From the
carefully selected key points on the network, the traffic is

sent to the machine on which the Snort IDS is executing. For
signature matching Snort uses an open-source registered rule
base. In order for the detection to be as accurate as possible,
it is important to refresh the database regularly. Snort IDS
logs alerts on the machine’s file system in JSON format. The
implemented Snort graphical interface reads the data from the
log file, processes it, and displays it to the user.

Fig. 2. System Architecture

By using the client-server model, the proposed visualization
interface allows the efficient graphical presentation of alerts
generated by Snort IDS. The server side of the application
(IDSWebApp server) reads the Snort IDS log file at application
startup (an initial read), as well as each time that file changes,
that is, when Snort generates a new alert. The IDSWebApp
server also formats these alerts so that they can be sent to the
client properly. Finally, the IDSWebApp server sends collected
alerts to the client using the web socket.

The client side (IDSWebApp client) receives data through
the web socket and reads the alerts sent by the server. Its
main function is to organize and display Snort alerts to the
system administrator in real-time, by refreshing the interface
with every new alert. This results in an instant display of
new alerts to the user. In addition, the client sorts the alerts
received from the server by four criteria and displays the most
common source addresses of the attack, the most common
alert priorities, the most common classes of attacks, and the
most common dates of attacks. Alert statistics are regularly
updated, thus showing the most common attack attributes.
Also, if the user selects a particular alert, the IDSWebApp
client will display detailed information about it. In that way,
the detection of possible traffic irregularities becomes quick
and straightforward.

The operation of the graphical interface and client-server
communication in order to display the warnings to the user is
given in the sequential diagram in Fig. 3.

Fig. 3. Sequential diagram of the Snort IDS visualization interface operation

IV. IMPLEMENTATION RESULTS

The client side of the Snort IDS system visualization
interface (IDSWebApp client) was developed in the TypeScript
programming language and the Angular framework. JavaScript
programming language, Node.js runtime environment and the
Express.js framework were used to develop the server side of
the application (IDSWebApp server). Client-server communi-
cation between them is done through the Socket.io library.
Snort IDS, version 3.0, is running on a Linux Ubuntu 20.04
server, with 4 processor units and 16GB of RAM.

The proposed Snort IDS visualization interface is shown
in Fig. 4. The evaluation of the interface, integrated into the
system from Fig. 2, was performed over two days. Traffic was
observed from the two servers on the network which have the
highest access rate, process the largest amount of data, and
are most vulnerable to attacks. The first part of the testing
was performed during the working hours from 11 am to 2
pm. During that period, the monitored network points were
completely opened to the Internet, without any protection in
the form of firewalls.

During the second part of the system evaluation, the system
was tested on an internal network protected from outside
intrusions by a firewall, for the duration of one hour, when
attacks were simulated using the Kali Linux. The purpose of
this testing was to simulate an attack coming from a local
network, possibly as a result of a social engineering attack.
For attack simulation purposes Vega vulnerability scanner was
used, which can execute different attack attempts in order to
find and validate SQL Injection, Cross-Site Scripting (XSS),
and other vulnerabilities. The obtained results are shown in
Fig. 4.

At the top of Fig. 4, in the Live alert log section, a list of all
network packets that Snort IDS has logged is displayed. The
bottom four sections show the most common source addresses,
classes and dates of attacks, as well as the most common alert
priorities. In the Top classifications section, it can be noticed
that the highest number of packets is classified with the class
”none”, which is of low priority. However, three classes of
attacks are also shown - Attempted Administrator Privilege

Fig. 4. Snort IDS visualization interface

Fig. 5. Misc attack alert example

Gain, Web Application Attack, and Misc Attack, with medium
and high priority.

Fig. 4 indicates a large number of packets (100k) that
generated the alert, most of them with low priority. The
administrator should pay attention to this type of warnings,
and check if there is a reason for further packet investigation.
However, packets that generate a higher priority and a specific
attack class are those that certainly require more detailed
analysis and further action.

In this regard, the proposed graphical interface can also
display the alert attributes, by clicking on a specific alert. The
attribute values of one of the detected attacks are shown in
Fig. 5. The ”Misc (miscellaneous) attack” alert displayed in
the figure provides detailed information about the source and

destination IP address of the logged packet, protocol, required
service, TCP port, timestamp, attack class, etc. The attributes
shown reveal very important information that can help detect
intrusions and take the necessary measures promptly to prevent
or stop the attack. This warning displays an SQL injection
attack attempt, which can be seen by the message field.
Detection of such a packet indicates that there is a rule in the
Snort database that marked this network packet as an attack
by the pattern matching process. The Snort rule that caused
this particular warning is:

alert tcp $EXTERNAL NET any ->$HOME NET
$HTTP PORTS (msg:”SQL union select - possible sql injec-
tion attempt - GET parameter”; flow:to server,established;
http uri; content:”union”,fast pattern,nocase; con-

tent:”select”,nocase; pcre:”\union\s+(all\s+)?select\s+/i”;
metadata:policy max-detect-ips drop,policy security-ips drop;
service:http; classtype:misc-attack; sid:13990; rev:26;)

The rule is shortened for better display, but all relevant
attributes are shown. It can be noticed that this rule recognizes
packets which can be a case of an SQL injection attack, due
to the characteristic content that contains the words ”union”
and ”select”. SQL injection is a web security vulnerability
that allows an attacker to interfere with the queries that
an application makes to its database. The consequences of
such an attack are great and can include unauthorized access,
modifying, or deleting sensitive data. In some situations, an at-
tacker can escalate an SQL injection attack to compromise the
underlying server or other back-end infrastructure or perform
a denial-of-service attack. The implemented system provides
an intuitive and fast way to detect attacks. It also helps to
classify important warnings from those that are negligible,
thus speeding up the analysis of a large number of logs by
administrators and allowing a more detailed investigation of
attacks with higher priority.

V. CONCLUSION

In this paper we designed and implemented a visualization
interface that graphically presents alerts generated by Snort
IDS and shows the most common source addresses, classes
and dates of attacks, as well as the most common alert
priorities, thus allowing the users to easily detect possible
traffic irregularities. The system has been tested in an appro-
priate environment in real-time. The results of attack detection
and classification were given. It is shown that the Snort
IDS visualization interface makes detecting possible network
irregularities quick and straightforward. Unlike a firewall that
usually monitors external traffic to the network, the proposed
system monitors traffic on any number of selected machines,
so it can also detect attacks from the local network, which
pose great danger. The great advantage of the system is that

it could be implemented on any location on the network and
it could collect logs from any IDS, which makes it a very
efficient and portable solution.

ACKNOWLEDGMENT

This work was supported by the Serbian Ministry of Educa-
tion, Science and Technological Development [grant number
TR32012].

REFERENCES

[1] H. J. Liao, C. R. Lin, Y. C. Lin, K. Y. Tung, ”Intrusion detection
system: A comprehensive review”, Journal of Network and Computer
Applications, Vol. 36, Issue 1, pp. 16-24, 2013.

[2] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, ”Survey of
intrusion detection systems: techniques, datasets and challenges”, Cy-
bersecurity, Vol. 2, 2019.

[3] J. M. Kizza, Guide to Computer Network Security, 4th. ed. Springer
Publishing Company, Incorporated, 2017.

[4] W. Stallings, L. Brown, Computer Security Principles and Practice,
Hoboken, New Jersey, Pearson Education, 2018.

[5] G. Ahmed, M.N.A. Khan, M. S. Bashir, ”A Linux-based IDPS using
Snort”, Computer Fraud and Security, Vol. 2015, Issue 8, pp. 13-18,
2015.

[6] Z. Hassan, Shahzeb, R. Odarchenko, S. Gnatyuk, A. Zaman and M.
Shah, ”Detection of Distributed Denial of Service Attacks Using Snort
Rules in Cloud Computing & Remote Control Systems,” IEEE 5th
International Conference on Methods and Systems of Navigation and
Motion Control (MSNMC), pp. 283-288, 2018.

[7] U. Aickelin, J. Twycross, T. Hesketh-Roberts, ”Rule Generalisation
in Intrusion Detection Systems using Snort”, International Journal of
Electronic Security and Digital Forensics, Vol. 1, 2008.

[8] N. Khamphakdee, N. Benjamas, S. Saiyod, ”Improving Intrusion Detec-
tion System Based on Snort Rules for Network Probe Attacks Detection
with Association Rules Technique of Data Mining”, Journal of ICT
Research and Applications, Vol. 8, pp. 234-250, 2015.

[9] V. Sharma, Getting Started with Kibana, In Beginning Elastic Stack,
Apress, Berkeley, CA, 2016.

[10] K. Scarfone, P. Mell, Guide to Intrusion Detection and Prevention
Systems (IDPS), NIST Special Publication, 2007.

[11] S. Gamage, J. Samarabandu, ”Deep learning methods in network in-
trusion detection: A survey and an objective comparison”, Journal of
Network and Computer Applications, Volume 169, 2020.

