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Abstract. With current VLSI technology approaching the scale of individual atoms, and
nanotechnology fabrication processes such as self-assembly, the resulting structures become
less predictable and less prone to fabrication defects. Fortunately, there are a lot of technical
applications that doesn’t require 100% correctness of the output. This fact can be used to
increase the fabrication yield and reduce unnecessary hardware overhead. For example, in
some DSP applications such as audio or video processing, correctness of the operation can be
defined as a threshold up to which a user will not notice the error. The threshold is usually
measured as a quantity of correct information in the output, i.e. the number of significant
digits. In this paper we propose a novel technique for mathematical modeling of significant
digits propagation under the presence of errors. The model incorporates Euclidean metric,
and it can be used to obtain the difference in the number of significant digits between any two
given intermediate results within the system. The information about loss of significant digits,
due to the propagation of error through the architecture, will be used to design a partially
fault tolerant system. The model is based on Min-Plus algebra, which is chosen to formalize
structural dependencies. The evaluation of the proposed model is performed on the example
of semi-systolic bit-plane array for FIR filtering, with error defined by Euclidean metric. It
is shown that proposed model leads to the significant reduction of unavoidable fault-tolerant
hardware overhead.

1. Introduction
The density of the transistors that can be placed on the single integrated circuit doubles ap-

proximately every two years, as Moore’s law predicted half a century ago [1]. Integrated circuits
nowadays contain up to 1010 devices, while slowly reaching lithography technological limits [2].
Current VLSI feature sizes go below 20nm, approaching the scale of individual atoms. The de-
mand for precision to image such a small devices has increased the cost of lithography, while the
resulting structures become less predictable. Expectations are that the chips in nanotechnology
will be able to integrate 1012, or even more devices [3, 4].
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There are two basic approaches in nanoscale devices manufacturing: top-down or bottom-
up [5]. Top-down fabrication reduces large pieces of materials all the way down to the nanoscale,
while the bottom-up approach creates products by building them up from atomic- and molecular-
scale components. Variety of processes include techniques from standard (nanoscale) lithography
to biologically inspired self-assembly [5]. Regardless the technology or fabrication process,
defects and variations coupled with stochastic assembly will likely to persist on every chip [4].
If not handled carefully, increasing process variations, defect rates, infant mortality rates, and
susceptibility to internal and external noises are likely to decrease functional yield. Having in
mind the number of devices per chip in both current VLSI and nanotechnology, the magnitude
of the problem of modeling error propagation through chip becomes significant [6].

There are a lot of technical applications that doesn’t require 100% correctness of the out-
put. For example, in some DSP applications such as audio or video processing, correctness of
the operation can be defined as an error threshold up to which a user will not notice the error.
Applying fault tolerance techniques only to the part of the system where eventual defects might
cause significant errors can improve overall fabrication yield [7]. One of the proposed methods
is Partial Defect Tolerance (PDT), which, in essence, aims to obtain the size and the position of
the most important part of the system, and to make it fault tolerant [8]. In order to determine
the most important part of the system, the intensive calculations have to be performed and error
propagation through the system needs to be analyzed [7].

The design of the PDT system strongly depends on the chosen metric between correct and
erroneous result, i.e. on the definition of error [7, 9]. If the error is modeled using Hamming’s
metric, it is assumed that the output contains errors if any bit differs from the correct result.
Modeling using Hamming’s metric is illustrated in [8]. For some applications, such as multime-
dia systems, Euclidean distance is more suitable for error modeling [8]. However, models that
include Euclidean metric are more difficult to develop and handle in the case of complex sys-
tems [8,9]. To the best of our knowledge, there is no suitable model, based on Euclidean metric,
for the analysis of significant digits propagation through the system represented by the data flow
graph.

In this paper we propose a novel technique for mathematical modeling of significant digits
propagation through the system under the presence of errors. The model incorporates Euclidean
metric, and it can be used to obtain the difference in the number of significant digits between any
two given intermediate results within the system. The information about loss of significant digits,
due to the propagation of error through the architecture, will be used to design a partially fault
tolerant system. Min-Plus algebra will be chosen to formalize structural dependencies within the
system [10]. It will be shown that Min-Plus algebra can be used to simplify error-propagation
modeling, which is required for system’s partitioning in PDT design [8]. The evaluation of
the proposed model will be illustrated on the example of semi-systolic bit-plane array for FIR
filtering, with error defined by Euclidean distance. It will be shown that proposed model leads to
the significant reduction of unavoidable fault-tolerant hardware overhead.

The paper is organized as follows. Section 2 gives a brief introduction to semi-systolic bit-
plane FIR filtering and PDT method. Section 3 is devoted to the tropical algebra, as a basis for the
mathematical model of significant digits propagation. Section 4 is the main section and presents
the proposed significant digits propagation model in formal mathematical manner. Section 5 is
devoted to model evaluation on the example of PDT semi-systolic bit-plane FIR filtering array,
while in Section 6 concluding remarks are given.
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2. Semi-systolic bit-plane FIR filtering array and partial de-
fect tolerance

The model of significant bits propagation will be developed on the example of bit-plane array
for FIR filtering. With aim to clarify the development of the model, we give a brief review of the
bit-plane FIR filtering array (BPA).

Output words {yi} of FIR filter are computed as

yi = c0xi + c1xi−1 + . . .+ ck−1xi−k+1, (1)

where c0, c1,. . . , ck−1 are coefficients while {xi} are input words. Computation (1) can be
realized in different manners. Systolic arrays are good candidates when high performances are
required. Semi-systolic arrays share with systolic arrays simplicity, regularity, and pipelining,
while they introduce slight irregularities, such as broadcast lines. The BPA is a semi-systolic
architecture with bit-plane operations [11, 12].

The following notation is adopted: m – coefficient word length; kC - number of coef-
ficients (c0, c1,. . . , ckC−1); n - input word length; cji - bit of coefficient ci (with weight
2j); ci ≡ cm−1i cm−2i · · · c0i , where c0i c

1
i . . . c

m−1
i are the bits of coefficient ci with weights

20, 21, . . . , 2m−1, respectively; cj ≡ cjk−1c
j
k−2 . . . c

j
0, where cj0, c

j
1, . . . , c

j
k−1, are the bits with

weight 2j of coefficients c0, c1,. . . , ck−1, respectively; l0 - the number of basic cells within one
row of a BPA; yj

i - the bit of output word yi with weight 2j ;
Let us consider the example for kC = 3 and m = 2. Eq. (1) can be decomposed into m = 2

bit-planes in the following manner:

yi =
(
c1021 + c0020

)︸ ︷︷ ︸
c0

xi +
(
c1121 + c0120

)︸ ︷︷ ︸
c1

xi−1 +
(
c1221 + c0220

)︸ ︷︷ ︸
c2

xi−2 =

=
(
c00xi + c01xi−1 + c02xi−2

)︸ ︷︷ ︸
bit plane 0

20 +
(
c10xi + c11xi−1 + c12xi−2

)︸ ︷︷ ︸
bit plane 1

21. (2)

The k-th bit-plane multiplies the input words {xi} and all the bits cki with the same weight 2k

from all coefficients ci, i = 0, 1, . . . , kC − 1. The transfer function of the bit-plane FIR filter,
which captures the execution order of the particular operations from (2) in a pipeline, can be
represented in the Z-domain as

G(z) =
y(z)

x(z)
= z−1(c1021z−3 + z−1(c1121z−3 + z−1(c1221z−3 +

+ z−1(c0021 + z−1(c0121 + z−1(c0221))), (3)

where z−i represents i delays in time. A BPA with kC = 3 and m = 2 that corresponds to the
equations (2) and (3) is shown in Fig. 1. There are m = 2 bit-plane elements that form the array
shown in Fig. 1a, with basic cells shown in Fig. 1b. Each bit-plane (Fig. 1) is formed as a set
of kC rows. A row performs the basic multiply-accumulate operation between the intermediate
result from the previous row and the product of the input word and one coefficient bit. Delays in
Fig. 1a are represented with small circles. Delayed for one clock cycle per row, the output word
is available after kC ·m clock cycles.

The BPA is semi-regular structure because of the broadcast line that feeds the input words
{xi} into each row of one bit-plane at the same time (Fig. 1). Furthermore, there are irregularities
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Fig 1.: The BPA for kC = 3 and m = 2: a) functional block diagram, b) the functions of the
array cells, c) data-flow graph.

in the structure of the array from Fig. 1a caused by shifting the intermediate results for one
position to the right between bit-planes (multiplication of the intermediate results with 1/2 in
Fig. 1c), as well as an irregularity introduced by the adder at the end of the array (Fig. 1a).

Let us consider partial defect tolerance of the BPA.
It is said for the system to be Fault Tolerant (FT) if it has the ability to continue correct

operation of its tasks after a fault occurrence [13]. Correct operation typically implies that no
errors occur at any system output. However, for some applications, such as audio or video
processing, correctness of the operation can be defined as an error threshold up to which a user
will not notice the error. The cost of manufacturing, verification, and testing can be reduced by
relaxing the requirement of 100% correctness for devices and interconnections [3, 7, 14].

The Partial Defect Tolerance (PDT) assumes that the application is tolerant to errors. PDT
system is the system in which only the most significant part is fault-tolerant. PDT design process
includes partitioning of the system, and it has the following steps [8]:

1. Define a metric and the state of the system fault.

2. Obtain the Error Propagation Graph (EPG) G, taking into account possible vulnerability
points of the system.

3. Form the adjacency matrix A for the graph G.

4. Compute the Error Significance Map (ESM) from the adjacency matrix, which marks crit-
ical nodes of the system.

5. Obtain the PDT system by applying a suitable FT method to the part of the system which
has been marked as critical by ESM.
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If we choose Hamming metric to quantify errors and define the state of system fault, every
single bit transition affected by existence of defects has the same weight and influence on the
output result. This assumption simplifies the error propagation analysis, but it has a drawback
that it doesn’t distinguish errors in more details [8]. It doesn’t take into the account the weight
of the errors from the particular array parts in the output result. The PDT architecture with
Hamming metric is presented in [8], and the partition of the array that requires the application
of some FT technique in order to protect the most significant bit from faults is shown with gray
cells in Fig. 1a. In other words, any transition caused by defects in any cell from the shaded
part of the array from Fig. 1a will cause the erroneous transition in the most significant bit of the
output result [8].

In order to add more details in the error propagation model, keeping the simplicity of the
model, the shift to alternative algebraic structures is required.

3. Tropical algebra
With aim to formalize the significant bits propagation model, we give a brief introduction to

the tropical algebra [10].
Min-Plus tropical algebra is the algebraic structure M = (N0 ∪ {∞} , min,+) with basic

arithmetic operations of addition (⊕) and multiplication (�) defined by

x⊕ y := min (x, y) , x� y := x+ y.

In words, the sum of two numbers is their minimum, and the product of two numbers is their
usual sum [10, 15]. For example, the tropical sum of 4 and 9 is 4⊕ 9 = 4. The tropical product
of 4 and 9 equals 4� 9 = 13. Many of the familiar axioms of arithmetic remain valid in tropical
settings [17]. For instance we have:

x⊕ y = y ⊕ x, x� y = y � x.

These two arithmetic operations are also associative, and the times operator � takes prece-
dence when plus ⊕ and times � occur in the same expression. The distributive law holds for
tropical addition and multiplication:

x� (y ⊕ z) = x� y ⊕ x� z. (4)

Both arithmetic operations have neutral element. The neutral element for ⊕ in N0 ∪ {∞} is∞
and the neutral element for � in N0 ∪ {∞} is 0, i.e.

x⊕∞ = x, x� 0 = x.

In order to express the results we need extensions of the operations ⊕ and � on matrices
[16–18]. We consider matrices, A = [ai,j ], with the elements in N0 ∪ {∞}. Tropical addition,
denoted ⊕, of matrices A and B is matrix C = A ⊕ B such that ci,j = ai,j ⊕ bi,j . Tropical
product of matrices A, of type NxK, and B, of type KxM , is matrix C = A � B = AB, of
type NxM , such that

ci,j =

K⊕
k=1

(ai,k � bk,j) , (5)
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where i = 1, . . . , N , j = 1, . . . ,M , and the tropical sum
⊕K

k=1 νk represents the sum ν1⊕ ν2⊕
· · · ⊕ νK .

Operation � is distributive in the respect to ⊕. For example, matrix multiplication is asso-
ciative operation, i.e.

A� (B � C) = (A�B)� C.
A neutral elements for tropical matrix addition and multiplication are zero matrix O =

[∞]NxN and identity matrix I = [δi,j ], with elements

δi,j =

{
0, i = j
∞, i 6= j

. (6)

As usual, we have A⊕O = A, A�O = O, and A� I = A.
We denote a tropical k-th power of matrix M as a matrix Mk with elements mk

i,j , where
M1 = M and M i+1 = M i �M .

Having in mind that 0 is the multiplicative identity element, it is shown in [10] that the tropical
Pascal’s triangle, which rows are the coefficients appearing in a binomial expansion, looks like
this [10]:

0
0 0

0 0 0
0 0 0 0

...

For example, the fourth row in the triangle represents the identity

(x⊕ y)3 = (x⊕ y)� (x⊕ y)� (x⊕ y) =

= 0� x3 ⊕ 0� x2y ⊕ 0� xy2 ⊕ 0� y3 =

= x3 ⊕ x2y ⊕ xy2 ⊕ y3. (7)

Now, we are in the position to develop the error propagation model of the BPA in tropical
algebra.

4. Significant bits propagation model
In order to obtain the error propagation model, the impact of error from one part of the system

to all other parts of the system should be considered [8]. The systems are usually represented by
directed graphs, which stress some of the architecture’s properties [8, 12].

Given a directed graph G = (V,E), where V = {v1, . . . , vn} is a finite set of vertices and
E is a finite set of edges, an edge e ∈ E is an ordered pair (vi, vj), where vi, vj ∈ V and an edge
(vi, vj) means that vertices vi and vj are connected. Let vi and vj be vertices and let ei,j denote
(vi, vj) ∈ E. Each edge has a weight wi,j ∈ N0 ∪ {∞}.

A path is ordered subset of edges P ⊂ E,P = {ei,k1
, ek1,k2

, . . . , ekn,j}, which connects
nodes vi and vj through nodes vk1 , vk2 , . . . , vkn . The path length is equal to the cardinality |P|,
while the path weight is

wi,j = (wi,k1 + wk1,k2 + · · ·+ wkn,j) . (8)
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We will define an adjacency matrix A with elements (ai,j) of graph G as

ai,j =

{
wi,j , ei,j ∈ E
∞, otherwise

. (9)

The dimensions of the matrix A are dxd, where d is cardinality of V, i.e. d = |V|.

Lemma 1. For the directed graph G represented by the adjacency matrix A, elements aki,j of
the matrix Ak are equal to the length of the shortest path that passes through exactly k edges
between nodes i and j within the graph G.

PROOF We will prove the lemma using mathematical induction. For k = 2, according to (5),
square of the matrix A is matrix A2 with elements

a2i,j =

K−1⊕
k=0

(ai,k � ak,j) , (10)

or, in usual (R ∪ {∞},+, ·) algebra (10) becomes

a2i,j = min {ai,0 + a0,j , ai,1 + a1,j , . . . , ai,K−1 + aK−1,j}

Having in mind that the element ai,k of the adjacency matrix represents the weight of the edge
between i-th and k-th node of the graph G, and that the element ak,j represents the weight of the
edge between k-th and j-th node, expression (10) is the minimum weight path between i-th and
j-th node that has exactly 2 edges.

If there is n, such that An is a matrix which elements are equal to the weights of the shotest
n-length paths, then, in the same manner, from (5) it can be shown that An+1 is the matrix with
elements equal to the weights of the shortest path with length equal to (n+ 1). �

From Lemma 1 it is straightforward to derive that the following lemma stands.

Lemma 2. The shortest paths matrix, S(G), of graph G can be obtained as

S(G) =

∞⊕
i=1

Ai =

T⊕
i=1

Ai, (11)

where T is the maximum-length path within the graph G.

With aim to construct the analytical model that can indicate the overall magnitude of error in
the output result, caused by possible existence of defect, we will define the system error, in the
respect to the Euclidean metrics.

Definition 1 (System Error). Let y be the output of the system without errors, and let yerr be the
output of the system with errors. The absolute error of the system is

∆E(y, yerr) = |y − yerr| , (12)

and the relative error of the system is

rE(y, yerr) =
∆E(y, yerr)

y
. (13)

The number of significant bits in yerr is defined as

z(y, yerr) = − log2 (rE (y, yerr)) . (14)
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Loss of significance in the output result is an undesirable effect in calculations that occurs
when relative error, i.e. the number of significant bits in yerr, decreases. For example, if 6-bit
output word is y = 26, and the absolute error is relatively small, for instance ∆E = |y − yerr| =
21, there are z = − log2

(
21/26

)
= 5 significant bits in the output result yerr with the presence

of the error. However, if the absolute error increases to ∆E = 25, there will be only z = 1
significant bit in the output result yerr, while the rest of the bits can’t be taken as correct. Thus,
in that case we can say that there is a major loss in significance in the output.

This gives us the opportunity to define the system failure using the concept of significate bits
in the output result.

Definition 2 (System Failure). Let α be a threshold value. The state of the system failure for
error tolerant architecture is the state where the number of significant bits in yerr is

z(y, yerr) < α. (15)

We will develop the significant bit propagation model by analyzing the change of the number
of significant bits, which occurs due to the transition of intermediate results from one vertex to
another, under the presence of errors. One basic cell of the BPA from Fig. 1b is represented by
one vertex in the error propagation graph G, as it is shown in Fig. 2a.

Fig 2.: The error model of the cell: a) two-bit output of the cell, b) the propagation of significant
bits through the carry path, c) the propagation through the sum path.

The wiring errors on the paths that feed x and c into the cell are neglected (Fig. 1b), due to
the fact that they represent broadcast lines (Fig. 1a). Thus, we assume that the defects might
exist in the logic circuits of a cell, and that those defects can cause erroneous outputs for sum s
and carry c.

Each basic cell from Fig. 1b, which is represented as a vertex vi in Fig. 2a, gives two-bit
output

yvi = ci · 21 + si · 20. (16)

If the logic circuits that computes the sum output s is defective, then the absolute error on the
cell’s output from Fig. 2a becomes

∆E(yvi , y
err
vi ) =

∣∣yvi − yerrvi

∣∣ =
∣∣(ci · 21 + si · 20

)
−
(
ci · 21 + si · 20

)∣∣ = 20. (17)

Using (13) and (14), we have that rE = 20/21 = 1/2, and the number of significant bits in this
case is zi = 1. Similarly, if the logic circuits that computes the carry output is defective, the
number of significant bits in the cell’s output is zi = 0.
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Let us consider the propagation of the number of significant bits through the system. For
that purpose, we will assume that the inputs ai and bi of the vertex vi from Fig. 2a might be
defective. From the cell’s transfer function (Fig. 1b) it is straightforward to show that a single
error in either ai or bi input will cause that the number of significant bits on the cell’s output
becomes zi = 1 (Fig. 2a). For example, if both inputs ai and bi are 0, and there is an error in ai
that causes ai = 1, then the output ci = 0 is correct, while the output si = 1 contains the error.
Thus, one of the bits is still correct, i.e. zi = 1. The same conclusion can be made for the error
in the input bi.

Figs. 2b and 2c show two possible error propagation paths. Fig. 2b presents the case when
the previous cell (vi in Fig. 2b) has an erroneous carry output ci. As the error is in the carry bit
of the vertex vi, the number of significant bits in that particular vertex is zi = 0. However, as the
error comes to the vertex vj via its input aj (Fig. 2b), the vertex vj will have zj = 1 significant
bits. Thus, the change of the number of significant bits, due to the propagation of the error from
vi to vj in Fig. 2b, is zi,j = zj − zi = 1.

The change of the number of significant bits zi,j = 1 means that the number of significant
bits increased for 1, i.e. the magnitude of the error is deceased if the error propagates through
carry path. Similarly, we obtain that the change of the number of significant bits, due to the
transition of the error through sum path s from Fig. 2a, as zi,j = 0, as it is shown in Fig. 2c. In
other words, the magnitude of the error doesn’t change if the error propagates through the sum
path.

Let us note that due to the properties of log2 function in (14), the number of significant bits
can be accumulated along the path. The change in the number of significant bits zi,j from the
vertex vi to vj , in the model from Fig. 2 represents the influence of error that appear in vi on
the output of the vertex vj , where zi,j = T, T ≥ 0 means that the output of the vertex vj has T
significant bits more than vi.

5. The design and implementation of PDF BPA with Euclidean
error metric

We will illustrate the significant bit propagation model from Fig. 2 on the example of PDT
BPA design. The Error propagation graph G of the BPA from Fig. 1a is shown in Fig. 3a. The
graph from Fig. 3a is obtained by direct mapping of the BPA topology from Fig. 1a on the error
propagation graph G, using the error propagation model of the basic cell from Fig. 2.

In order to avoid irregularities between bit-planes, and obtain more convenient analytical
model of error propagation, the graph G is extended with ”dummy” cells, which are shown as
white circles in Fig. 3b. There are p = l0 + (m− 1) basic cells in each row, and q = m · kC + 1
basic cells in each column of the graph G from Fig. 3b, including the cells of the adder at the
bottom of the array. The total number of cells is t = p · q.

The adjacency matrix of the error propagation graph from Fig. 3b is of the following form:

A =


O AR O · · · O
O O AR · · · O
...

. . .
O O O · · · AR

O O O · · · Aadd


qxq

, (18)
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Fig 3.: The Error Propagation Graph for BPA with kC = 3 and m = 2: a) direct representation,
b) modified graph with removed irregularities

where matrices AR and Aadd are

AR =



0 1 ∞ · · · ∞ ∞
∞ 0 1 · · · ∞ ∞
∞ ∞ 0 · · · ∞ ∞
...

. . .
∞ ∞ ∞ · · · 0 1
∞ ∞ ∞ · · · ∞ 0


pxp

Aadd =



0 1 ∞ · · · ∞ ∞
∞ 0 1 · · · ∞ ∞
∞ ∞ 0 · · · ∞ ∞
...

. . .
∞ ∞ ∞ · · · 0 1
∞ ∞ ∞ · · · ∞ 0


pxp

.

(19)
Due to the position of submatrices AR and Aadd in the matrix A from (18), it can be noticed

that the submatrix AR describes the connectivity of two neighboring rows within the graph G,
while the submatrixAadd corresponds to the edges in the last row of the graph, i.e. the adder. For
example from Fig. 3b, the order of submatrices AR and Aadd from (19) is p = 7, and according
to (18), the element a1,8 of the adjacency matrix A of the graph G is a1,8 = 0, due to the fact
that the weight of the edge that connects vertices v1 and v8 is equal to 0. The element a1,9 = 1,
etc.

We will give the error propagation model, i.e. the change of the number of significant bits
from each basic cell to all other basic cells of the semi-systolic BPA in the form of the following
theorem.

Theorem 1. The significant bits propagation matrix S(G) of the error propagation graph G of
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the BPA from Fig. 3b can be obtained as

S(G) =

∞⊕
i=1

Ai =


O AR A2

R A3
R · · ·

(⊕∞
i=1A

i
add

)
Aq−1

R

O O AR A2
R · · ·

(⊕∞
i=1A

i
add

)
Aq−2

R
...

. . .
O O O O · · ·

(⊕∞
i=1A

i
add

)
AR

O O O O · · ·
(⊕∞

i=1A
i
add

)


qxq

. (20)

PROOF The matrix A from (18) can be written as a tropical sum of two matrices

A = A1 ⊕A2, (21)

where

A1 =



O AR O · · · O O
O O AR · · · O O
O O O · · · O O
...

. . .
O O O · · · O AR

O O O · · · O O


pxp

A2 =



O O O · · · O O
O O O · · · O O
O O O · · · O O
...

. . .
O O O · · · O O
O O O · · · O Aadd


pxp

,

(22)
i.e. the elements at the position (i, j) in the matrices A1 and A2 are

(A1)i,j =

{
AR, i+ 1 = j
O, otherwise

, (A2)i,j =

{
Aadd, i = j = q
O, otherwise

. (23)

Then, the significant bits propagation matrix S(G) of the error propagation graph G of the BPA
from Fig. 3b, according to lemma 2 and binomial expansion (7), can be obtained as the shortest
path matrix

S(G) =
⊕∞

i=1A
i =

⊕∞
i=1 (A1 ⊕A2)

i
=
⊕∞

i=1

(⊕i
u=0A

u
1A

i−u
2

)
=
⊕∞

i=1

(
Ai

1 ⊕
(⊕i−1

u=1A
u
1A

i−u
2

)
⊕Ai

2

)
(24)

Using (22) and (23) it is straightforward to develop exponentials of the matrices An
1 , An

2 , and
An

1A
k−n
2 , which by substituting into (24) directly proves (20). �

The significant bits propagation matrix S(G) from theorem 1 gives the differences in the
number of significant bits through graph G from Fig. 3b for all vertex combinations. If we select
only the values from (20) that correspond to the output y, and rewrite them in the form which
topologically corresponds to the graph G, we obtain Euclidean matrix D of the graph G from
Fig. 3b as

D =


0 1 2 3 · · · p− 2 p− 1
0 1 2 3 · · · p− 2 p− 1
0 1 2 3 · · · p− 2 p− 1
0 1 2 3 · · · p− 2 p− 1
0 1 2 3 · · · p− 2 p− 1
0 1 2 3 · · · p− 2 p− 1


pxq

. (25)
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The matrix D has elements di,j equal to the difference of the number of significant bits z in
the result y, and the number of significant bits in the vertex that corresponds to the basic cell in
i-th column and j-th row of the error propagation graph G.

The most significant partition of the BPA can be obtained from matrix D. For example, if the
error threshold (15) is defined with α = 1, meaning that the system can tolerate errors if there
is at least 1 significant bit in the output (errors up to 2p−2), then, according to definition 2, the
system will not be in the failure state if z ≥ 1. In this case, the system will have failure only if
z = 0. The most significant partition, as can be seen from (25) is a set of cells from leftmost
column of the graph G from Fig. 3b. This is due to the fact that in that case all other cells might
produce error equal or lower then 2p−2.

If the system can tolerate errors up to 2p−3, the threshold from (15) is α = 2. Thus, the
system can tolerate the errors only if the number of significant bits in the output is z ≥ 2. The
most significant array partition in that case contains the cells that corresponds to two leftmost
columns of the matrix D, where z < 2, etc.

However, it must be taken into the account that the graph G from Fig. 3b contains ”dummy”
cells, as well. Thus, the most significant partition in the case of α = 1 contains only cells
from the leftmost column of the last bit-plane, as all other bit-planes have ”dummy” cells in the
leftmost column.

We will evaluate hardware requirements of PDT BPA with Euclidean metric and Triple Mod-
ular Redundancy (TMR) as a method of choice for FT basic cells [7, 8]. The most significant
partition of the BPA in respect to (25) is shown in Fig. 5a. The Fig. 5a shows BPA for kC = 3
and m = 3, and fault tolerant partition filled with dark-lines pattern for error threshold α = 1.
For the sake of comparison, the BPA partition for error threshold that protects the most signifi-
cant bit using Hamming’s metric is given with the cells shaded in light-gray in Fig. 5a [8]. The
structure of TMR cell is shown in Fig. 5b, where ”V” stands for majority voter.

Fig 4.: The PDT BPA that can tolerate defects which can produce errors with the magnitude up
to 2p−2
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It should be mentioned that the most significant partition obtained using Euclidean metric is a
subset of the partition selected using Hamming’s metric. Thus, the Hamming metric protects the
architecture from defects equally well, or even better, because it involves additional redundancy.
However, it requires more hardware. Euclidean metric, in the other hand, gives more details
about the error propagation, which can lead to the reduction of chip resources occupation in the
cases when it is not needed to obtain exact values of the resulting bits, but rather to limit the
overall magnitude of possible error. For example, if the correct output result is ”10000000”, and
the error is produced by the second cell from the right in the first row of the BPA from Fig. 5a,
the erroneous result will be ”01111111”. The PDT BPA with Hamming metric marks this cell
as important, because it causes the transition of all output bits, but the PDT BPA with Euclidean
metric will not mark this cell as important, because it produces a relatively small magnitude of
error equal to 21, according to (25).

Hardware requirements of three different array sizes for both Hamming’s and Euclidean met-
ric are given in Table 1. The table shows evaluation results for three BPAs with kC = 4 and
m = 8, and the input word {x} of the length n = 8 in the case of the BPA labeled as ”Arr1”,
n = 16 labeled as ”Arr2”, and n = 24 as ”Arr3”. The input word length n directly affects the
overall width of the bit-plane array [11], thus the BPA ”Arr1” has l0 = 16, ”Arr2” has l0 = 24,
while the BPA ”Arr3” is of the width l0 = 32.

For each of the three mentioned BPAs, two columns are given in Table 1: the total number of
required basic cells for the PDT BPA with Euclidean metric (PDT BPAE), and the total number
of cells for the PDT BPA with Hamming metric (PDT BPAH ).

The threshold α is given in table 1 in the range from 0 to 16. For α = 0 we have that the
BPA is completely tolerant to errors, with no need to involve FT methods on any cell, while for
α = p all cells are important and they require application of TMR FT method. The total number
of required cells in both BPAE and BPAH cases is obtained as the total number of cells in the
basic BPA, plus the redundant basic cells added in the most important partition of the array. For
example, for α = 0 BPA ”Arr1” consists of (m · kC) · l0 = 8 ·4 ·16 = 512 basic cells. For α = 1
the most important partition of BPA ”Arr1” consists of kC = 4 cells, thus 512 − 4 = 508 cells
in their basic form, while only 4 cells are triplicated by TMR technique as shown in Fig. 5b. The
total number of required basic cells for ”Arr1” and α = 1 is (512− 4) · 1 + 4 · 3 = 520 (Table
1).

Table 1.: Number of basic cells required for the implementation of arrays with different sizes
with α as a parameter

Arr1 Arr2 Arr3
α BPAE BPAH BPAE BPAH BPAE BPAH

0 512 512 768 768 1024 1024
1 520 1236 776 1598 1032 1856
2 536 1274 792 1658 1048 1920
4 592 1344 848 1770 1104 2048
8 800 1450 1056 1962 1312 2304
16 1312 1536 1568 2218 1824 2730

The results from Table 1 are illustrated in Fig. 5. From Table 1 and Fig. 5 it can be seen that
PDT BPAs with both Euclidean and Hamming’s metric for α > 0 have hardware overhead, due
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to unavoidable triplication caused by application of TMR. However, the number of triplicated
cells in the PDT BPA with Euclidean metric is lower than the number of triplicated cells in the
PDT BPA with Hamming’s metric, especially for lower values of α. For maximum α, where all
output bits are important, for both Euclidean and Hamming’s metrics the number of triplicated
cells will be maximal and equal. For lower values of threshold α significant hardware reductions
can be achieved.

Fig 5.: The PDT BPA that can tolerate defects which can produce errors with the magnitude up
to 2p−2

6. Concluding remarks

In this paper a novel technique for mathematical modeling of significant digits propagation
through the system under the presence of errors is proposed. The model incorporates Euclidean
metric, and it can be used to obtain the difference in the number of significant digits between any
two given intermediate results within the system. It is shown that the model is suitable for fault
tolerant system design if the application doesn’t require 100% correctness of the output. Min-
Plus algebra is chosen to formalize structural dependencies within the system. The proposed
model is evaluated on the example of semi-systolic bit-plane array for FIR filtering, with error
defined by Euclidean distance. The most significant partition obtained using Euclidean metric is
a subset of the partition selected using Hamming’s metric. From that perspective, the Hamming
metric protects the architecture from defects equally well, or even better, because it involves ad-
ditional redundancy. However, it introduces the significant hardware overhead. Euclidean metric,
used in this paper, gives more details about the error propagation and enables the limitation of the
overall error magnitude in the presence of errors, while the overall hardware overhead is reduced.

Acknowledgement. The research was supported in part by the Serbian Ministry of Educa-
tion, Science and Technological Development (Project TR32012).



The Significant Bits Propagation Model in Fault-Tolerant System Design 175

References
[1] MOORE G.E., Cramming more components into integrated circuits, Electronics, 38(8), 1965.

[2] HASELMAN Michael, HAUCK Scott, The Future of Integrated Circuits: A Survey of Nanoelectro-
nics, Proceedings of the IEEE, 98(1), pp. 11–38, 2010.

[3] ITRS, International Technology Roadmap for Semiconductors,
http://www.itrs.net/links/2010itrs/home2010.htm, 2010.

[4] MISHRA M., GOLDSTEIN S.C., Defect Tolerance at the End of the Roadmap, Intl Test Conference
Proceedings, 1, pp. 1201–1210, 2003.

[5] MIJATOVIC D., EIJKEL J., VAN DEN BERG A., Technologies for nanofluidic systems: top-down
vs. bottom-upa review., Lab on a Chip, 5(5), pp. 492–500, 2005.

[6] RIVERS J.A., PRABHAKAR Kudva, Reliability challenges and system performance at the architec-
ture level. IEEE Design & Test of Computers, No. 6, pp. 62–73, 2009.
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