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Nanotechnology is yet to come, but even now, in early stage of development it is clear that
defect and fault levels will be much higher than current CMOS technology. The exact level
of defect densities is unknown, but it is assumed that 1—15% on-chip resources will be
defective. Novel techniques and architectures have to be devised in order for nanoelectron-
ics to become a viable replacement for current VLSI processes. With defect rates for current
VLSI processes in the range of 1 part per billion, manufacturers can afford to discard any
chip that is found to be defective. However, in order to increase fabrication yield, nanotech-
nology requires extensive and computationally demanding analysis of defect significance.
In order to simplify the analysis, in this paper we propose a mathematical framework based
on tropical algebra for circuit analysis. It is more descriptive and convenient to use in graph
analysis than traditional algebra. In tropical algebra, we will derive a simple iterative
algorithm for error propagation analysis of systolic arrays. It will be shown that the
computational complexity of the proposed algorithm is reduced from OðT3Þ to OðT2Þ,
where T is the number of array cells. An example of tropical algebra analysis and design
of partially defect tolerant hexagonal systolic multiplier will be given, too.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In 1975 Gordon Moore, cofounder of Intel, predicted that the number of transistors that could be placed on a chip
would double every two years [1]. Chip manufacturers have relied on the continued scaling down of the transistor size
to achieve the exponential growth in transistor counts, but the scaling will be ended soon. Moore’s law cannot hold
forever. When the size of a transistor reaches the limit of 1–2 atoms, the scaling will have to cease and a new
technology have to be adopted [2].

The current projections by the International Technology Roadmap for Semiconductors (ITRS) say that the end of the road
on MOSFET scaling will arrive sometime around 2018 with a 22 nm process [3]. Even getting to 22 nm presents some major
unsolved hurdles. Among these are increasing power consumption, particularly through leakage currents, less tolerance for
process variation, and increasing cost [2]. Given the history of the semiconductor industry, most of these issues can probably
be solved with current processes. However, there are two significant exceptions. Physical size limitations and astounding
costs may require a shift in the fundamental way integrated circuits are fabricated. Many researchers believe that the shift
will be to nanoelectronics. It is estimated that nanoelectronics will be able to integrate 1012 devices per cm2, while the ITRS
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[3] estimates that at the end of the roadmap in 2018 manufacturers will only be able to achieve 1010 MOSFET transistors per
cm2 [2,4].

With current transistors and lithography, essentially any circuit can be created and manufactured with high reliabil-
ity. This level of control is unlikely to be possible for nanoelectronics. Because of their small size, nanoelectronic devices
will likely not be able to be deterministically placed [5]. Researchers have been able to manipulate components with
atomic force microscopes, but this will be impractical for full chips. Even if advances in manufacturing allow other ways
to manipulate at this scale, the tolerances required will likely make the costs prohibitive. One of the approaches is to let
the circuits to assemble themselves [2,5]. The consequence is that defects are inevitable and must be systematically han-
dled [6].

Even though nanoelectronics device fabrication is in its infancy, it is clear that defect and fault levels will be much higher
than current CMOS technology. The exact level of defect densities is unknown, but it is assumed that 1–15% of the resources
on a chip (wires, switches FETs, etc.) will be defective [4,7]. Current research on fault tolerance has followed three tracks to
solve this problem. These are configuring around the defects [8], masking faults with redundancy or designs that are inher-
ently fault tolerant [2,9].

A balanced combination of circuit and logic level innovations, and architecture and software level solutions is necessary
to achieve the required resiliency. In particular, a comprehensive understanding of the vulnerabilities of the architecture is
necessary [6,10]. When such information is available, appropriate and cost-effective approaches can facilitate efficient error
resiliency. Such a toolset and methodology would help derive vulnerability maps of the chip, which can be optionally visu-
alized as color-coded chip floorplans indicating hotspot regions of the chip [6], and facilitate in finding the most vulnerable
partition of the architecture to apply some of the defect tolerance methods [10]. Architecture which has the most vulnerable
partition designed as defect tolerant is called Partially Defect Tolerant (PDT) architecture [10]. A careful analysis of defect
rates and error propagation paths through an architecture can lead to fabrication yield improvement [11].

The error propagation analysis relies on a selected error metrics, and even for relatively simple metrics the analysis can be
a complex task. Furthermore, the analysis steps usually depend on a given topology [10]. Finding a suitable algebraic struc-
ture as a mathematical framework could be a powerful tool for problem complexity reduction in circuit design [12]. In this
paper we propose a framework for error propagation analysis, which is based on relatively new mathematical field called
tropical algebra [13,14]. In tropical algebra, we will derive simple iterative algorithm for error propagation analysis of sys-
tolic arrays in general. It will be shown that the computational complexity of the proposed algorithm is reduced from OðT3Þ
to OðT2Þ, where T is the number of array cells. An example of tropical algebra analysis and design of partially defect tolerant
hexagonal systolic multiplier will be given.

The paper is organized as follows. Section 2 gives a brief background on error propagation, error significant maps, and
partial defect tolerance. Section 3 is devoted to the tropical algebra as a basis for error propagation analysis. Section 4 is
the main section and presents the proposed analysis method in formal mathematical manner. The complexity reduction
analysis will be given in Section 5. A design example of the PDT systolic multiplier will be presented in Section 6. Section 7
is devoted to FPGA implementation, while in Section 8 concluding remarks are given.

2. Partial defect tolerance and error analysis

With aim to clarify the analysis of error propagation, we give a brief review of Error Significance Map (ESM) development,
and its role in yield improvement through the application of partial defect tolerance [10,11].

Fault tolerance (FT) is the ability of a system to continue correct operation of its tasks after hardware or software faults
occur (see [15]). Correct operation typically implies that no errors occur at any system output. Relaxing the requirement of
100% correctness for devices and interconnections may dramatically reduce costs of manufacturing, verification, and testing
(see [3]). If a signal processing device has a minor hardware defect, it can still produce results that are good enough for the
end user. If so, they could also be sold rather than be discarded (see [16]).

The PDT assumes that the application of the architecture is, mainly, tolerant to errors. In order to improve the yield, the
PDT applies FT methods only to the most critical parts of the architecture. Taking into the account the probability of having a
defect, this approach introduces a design compromise that can lead to yield improvement [11].

PDT design process has the following steps [10]:

1. Define a metric and the state of the system fault - The metric defines the distance between the correct and erroneous
result. The system is not operational if the distance is above the threshold that application can tolerate.

2. Error Propagation Graph (EPG) – The EPG is obtained for a given architecture, taking into account possible vulnerability
points and the adopted metric. The edges of the graph indicate the paths between architecture’s nodes where errors can
propagate. The graph edges are weighted by the defined metric.

3. Adjacency matrix – The matrix is obtained from the EPG in such a manner that its elements indicate existence of edges
between the corresponding nodes.

4. ESM – computed from the adjacency matrix, and interpreted as a matrix with the structure that visualize critical nodes
for the correct operation of the architecture. Allowed error threshold is a parameter used in computation of the map. The
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lower the error threshold, the more of the nodes will be declared as important. The ESM development technique,
proposed in [10], suggests using a transitive closure on the adjacency matrix.

5. The PDT architecture is obtained applying a suitable FT method to the part of the architecture which has been marked by
ESM.

We will illustrate PDT design process on the example of PDT bit-plane FIR filter design, proposed in [10] (Fig. 1). The FIR
filtering is a processes of transforming the input sequence fxig; i ¼ 0;1;2; . . ., into the output sequence fyig; i ¼ 0;1;2; . . .,
using the coefficients ci; i ¼ 0;1; . . . ; k� 1, as
Fig. 1.
propag
yi ¼ xi � c0 þ xi�1 � c1 þ � � � þ xi�ðk�1Þ � ck�1: ð1Þ
One possible hardware implementation of FIR filtering is on the bit-plane array. The bit-plane array cells operate with single
bits, multiplying one bit from the input word with weight 2j, denoted as xj, and one bit from the coefficient ci with weight 2j,
denoted as cj

i, and accumulating the previous partial product to the computed product [10,17]. The transfer function of the
bit-plane FIR filtering array is a z-domain representation of the filtering Eq. (1), where all operations are bit-operations. The
transfer function is
(a)

(b) (c)

(e)(d)

PDT semi-systolic bit-plane FIR filter array design steps: (a) Data Flow Graph of the semi-systolic bit-plane FIR filter, (b) the basic array, (c) error
ation graph, (d) the ESM, (e) PDT semi-systolic array.
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GðzÞ ¼ YðzÞ
XðzÞ ¼ z�1ðcm�1

0 2m�1z�ðm�1Þk þ z�1ðcm�1
1 2m�1z�ðm�1Þk þ . . .

þ z�1ðcm�1
k�1 2m�1z�ðm�1Þk

þ z�1ðcm�2
0 2m�2z�ðm�2Þk þ z�1ðcm�2

1 2m�2z�ðm�2Þk þ . . .

þ z�1ðcm�2
k�1 2m�2z�ðm�2Þkþ

. . .

þ z�1ðc0
020 þ z�1ðc0

120 þ z�1ð� � � þ z�1ðc0
k�120ÞÞ . . .Þ: ð2Þ
The bit-operations that use the coefficients bits with same weight are grouped into the so called bit-planes (Eq. 2). For the
sake of illustration, Fig. 1a shows an algorithmic abstraction of hardware realization of relatively small bit-plane array using
Data Flow Graph (DFG). This array performs filtering of input sequence xi using k ¼ 2 coefficients with length m ¼ 2. As the
coefficient length is m ¼ 2 there are two bit-planes in Fig. 1a. Hardware realization is direct application of Eq. (2), and it is
shown in Fig. 1b. The input word length of the array from Fig. 1b is n ¼ 2. The basic cells are represented using squares, while
the delays are denoted with circles (Fig. 1b). Each basic cell performs basic bit operations, as it is shown in Fig. 1b. The output
word is formed by the adder, which adds the carries to partially formed sums.

PDT proposed in [10] is illustrated on the example of the bit-plane FIR filter from Fig. 1b. In the respect to the previously
described PDT steps 1 to 5, the chosen metric within the first step in the example published in [10] is Hamming’s metric.
Based on the proposed metric, it is assumed that the system is operational if
dHðA;AerrÞ ¼ DH ¼
XL�1

i¼L�a

ðai
Y ai

errÞ ¼ 0; ð3Þ
where dHðA;AerrÞ is a distance between the correct and erroneous result (A and Aerr , respectively), ai and ai
err are bits of A and

Aerr , respectively, with weights 2i; L is the total number of architecture outputs, and a is the number of the most significant
output bits that cannot tolerate errors, which represents allowed error threshold. In other words, according to (3), system is
operational if a most significant bits of obtained result are identical to the bits of the correct result.

The EPG of the array from Fig. 1b is shown in Fig. 1c. While forming the EPG in the step 2 of the PDT design process from the
architecture shown in Fig. 1b, new fictive nodes are introduced in order to obtain highly regular graph structure, which is more
convenient for further manipulation [10]. The nodes that exist in the implementation in Fig. 1b are colored in black in Fig. 1c,
fictive nodes that introduce high-regularity into the graph are shown in white, while the grey color denotes output nodes. Hav-
ing in mind the metric defined by (3), the weights of all existing edges in the graph from Fig. 1c are equal to w ¼ 1. In other
words, this is the simplest form where the error that appears in one node propagates with the same weight to the other.

Due to the size of the adjacency matrix, the matrix obtained in the step 3 of the PDT design process is omitted from Fig. 1
(see [10]). The ESM is obtained in the fourth step of the PDT process using the transitive closure of the adjacency matrix, and
it is shown in Fig. 1d, for a ¼ 2. The ESM is a matrix Ma ¼ ma

i;j, whose element ma
i;j ¼ 1 if there is a path from a node on the

position ði; jÞ in the EPG to some of the a ¼ 2 most significant outputs (Fig. 1) [10].
The ESM visualizes the vulnerabilities of the array. Using the map, the PDT architecture is obtained in the fifth step of the

PDT design process, and shown in Fig. 1e. The FT partition of the array is shown in gray in Fig 1e.
It is shown in [11] that fabrication yield can be increased by application of PDT, using FT techniques to increase the tol-

erance of the most critical part of the array, having in mind defect rates. The defect rate, for which the PDT architecture in-
creases the yield, depends on the size of the array. For the scope of the problem typical in nanotechnology PDT can introduce
yield improvement [11].

However, the computations performed using the PDT method proposed in [10], due to the simplified metric that is used,
do not take into the consideration the potential change of the error weight after the propagation. It has the side effect that
can be illustrated on the following example. If the magnitude of the correct output signal fyig is 011 . . . 111, and the error
within a signal is small, e.g. 000 . . . 001, the output result will be 100 . . . 000. This seems to be an error in all bits of the output
result, including the most significant one. Due to this fact, the PDT method with the metric given with (3) will mark partic-
ular cell (upper-right in Fig. 1b) as important, regardless the fact that the error produced within the cell is very small. Thus, if
the more accurate metrics are used in the PDT design the yield could be improved even further then it is given in [11].

If the chosen error metric was Euclidian, instead of Hamming’s, the elements of ESM from Fig. 1d will be rather mi;j 2 N0,
instead of mi;j 2 f0;1g, and the elements mi;j will be proportional to the weighted path length. This requires more robust
mathematical expressions, and more complex computations. Tropical algebra [13] can be used as a tool that can help in
reducing the complexity of such operations. In the next section we’ll briefly introduce the tropical algebra, and develop re-
quired tropical matrix forms.

3. Tropical algebra

Rather than coloring the architecture vulnerabilities in ‘‘black and white’’, as illustrated in previous example (0� 1 coding
in Fig. 1), in this paper we are proposing a toolset for ESM development, which will include much more details of the
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architecture vulnerabilities. We will refer in further text to this maps as the Color-Coded ESM (CCESM). The prefix Color-
Coded is given with the respect to the vision of ‘‘future toolsets and technologies, required for the success of nanotechnol-
ogy’’, proposed in [6].

The development of CCESM can be a complex task. Hence, more accurate metrics should be used. In order to reduce
development complexity, in this paper we propose a novel method for error propagation analysis of systolic arrays based
on tropical algebra.

3.1. Tropical semiring

The tropical algebra is an algebraic structure R [ f1g;�;�ð Þ. This algebraic structure is known as the tropical semiring or
as the min-plus algebra. The adjective ‘‘tropical’’ was coined by French mathematicians, notably Jean-Eric Pin [13], to honor
their Brazilian colleague Imre Simon [18], who pioneered the use of min-plus algebra.

In the tropical semiring, the basic arithmetic operations of addition and multiplication of real numbers are redefined as
x� y :¼ min x; yð Þ; x� y :¼ xþ y:
In words, the tropical sum of two numbers is their minimum, and the tropical product of two numbers is their usual sum. For
example, the tropical sum of 4 and 9 is 4� 9 ¼ 4. The tropical product of 4 and 9 equals 4� 9 ¼ 13.

Many of the familiar axioms of arithmetic remain valid in tropical mathematics [14]. For instance, both addition and mul-
tiplication are commutative:
x� y ¼ y� x; x� y ¼ y� x:
These two arithmetic operations are also associative, and the times operator � takes precedence when plus � and times �
occur in the same expression. The distributive law holds for tropical addition and multiplication:
x� ðy� zÞ ¼ x� y� x� z:
Both arithmetic operations have a neutral element. Infinity is the neutral element for addition and zero is the neutral
element for multiplication:
x�1 ¼ x; x� 0 ¼ x:
Analysis of error propagation through systolic arrays requires matrix manipulation. We will briefly investigate the
properties of matrix operations in tropical algebra.

3.2. Properties of basic matrix operations in tropical algebra

Let A ¼ ½ai;j� and B ¼ ½bi;j� be matrices with NxK and KxM elements, respectively.

Definition 1 (Matrix multiplication). Tropical product of matrices A and B is matrix C ¼ A� B with NxM elements of the
following form:
ci;j ¼a
K�1

k¼0
ai;k � bk;j

� �
; ð4Þ
where i ¼ 0;1; . . . ;N � 1; j ¼ 0;1; . . . ;M � 1, and the tropical sum a
K�1
k¼0 mk represents the sum m0 � m1 � � � � � mK�1.

Matrix multiplication is associative operation, i.e.
A� B� Cð Þ ¼ A� Bð Þ � C:
A neutral element for tropical matrix multiplication is identity matrix I ¼ ½ui;j�, with elements
ui;j ¼
0; i ¼ j

1; i – j

�
:

Let matrix A ¼ ½ai;j�, with NxK elements, be represented by its submatrices Ap;q as
A ¼

A0;0 A0;1 � � � A0;k�1

A1;0 A1;1 A1;k�1

..

. . .
.

An�1;0 An�1;1 An�1;k�1

2
66664

3
77775

NxK
and let matrix B ¼ ½bi;j�, with KxM elements, be represented by its submatrices Bp;q in the same manner. Directly from the
definition of tropical matrix multiplication (Def. 1) it can be shown that the following lemma holds.
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Lemma 1. Submatrix Cp;q of matrix C ¼ A� B is of the following form
Cp;q ¼a
k�1

i¼0
Ap;i � Bi;q: ð5Þ
It should be noted that Lemma 1 stands for any semiring ðG;þ; �Þ. Let a tropical kth power of the adjacency matrix A of
graph G be represented as a matrix A�k with elements a�ki;j .

Lemma 2. Elements a�ki;j of the matrix A�k are equal to the length of the shortest path that pass through exactly k edges between
nodes i and j within the graph G.
Proof. We will prove the lemma using mathematical induction. For k ¼ 2, according to (4), square of the matrix A is matrix
As with elements
as

i;j ¼a
K�1

k¼0
ai;k � ak;j
� �

; ð6Þ
or, in usual R [ f1g;þ; �ð Þ algebra Eq. (6) becomes
as

i;j ¼min ai;0 þ a0;j; ai;1 þ a1;j; . . . ; ai;K�1 þ aK�1;j
� �

:

Having in mind that the element ai;k of the adjacency matrix represents the weight of the edge between ith and kth node of
the graph G, and that the element ak;j represents the weight of the edge between kth and jth node, expression (6) is the
minimum weight path between ith and jth node that has exactly 2 edges.

If there is n, such that A�n is matrix whose elements are equal to the weights of the shortest n-length paths, then, in the
same manner, from (4) it can be shown that is the matrix with elements equal to the weights of the shortest ðnþ 1Þ
length path. h

From Lemma 2 it is straightforward to derive that the following lemma stands.

Lemma 3. The shortest paths matrix, SðGÞ, of graph G can be obtained as
SðGÞ ¼a
T

i¼1
A�i ¼a

1

i¼1
A�i ; ð7Þ
where T is the maximum-length path within the graph G.
4. Error propagation through systolic arrays

Using the toolset adopted in the previous section, in this section we will derive an algebraic form of the error propagation
of systolic arrays, which will be further used in the design of partially error tolerant arrays with much more details of array
vulnerabilities.

Error propagation can be defined as an erroneous computation in the architecture’s node v i, which is not caused by a
defect within that particular node, but rather by the erroneous data on the node’s inputs, caused and propagated from some
of the defective predecessors nodes [10,15]. Let the error propagation through an architecture be represented by the error
flow graph G. Given a directed graph G ¼ ðV ; EÞ, where V ¼ fv1; . . . ;vng is a finite set of vertices, where each vertex stands
for one architecture node in which error can occur, and E is a finite set of edges; An edge ei;j 2 E is an ordered pair ðv i;v jÞ,
where v i;v j 2 V and an edge ðv i;v jÞmeans that error that appears within vertex v i can propagate to the vertex v j. Each edge
ei;j 2 E has a weight wi;j equal to the influence of the error that originates from the vertex v i into the computation in the
vertex v j.

Let each processing element of an array be represented by one vertex in the graph G. We will consider error propagation
graphs that have regular topologies with only neighboring rows and columns connected, as the most common topologies [2].
Therefore, the adjacency matrix of the graph G of regular array is of the following form
AðGEÞ ¼

AR AC 1 � � � 1
1 AR AC 1
1 1 AR 1
..
. . .

.

1 1 1 AR

2
66666664

3
77777775

nxn

; ð8Þ
where AR is row connectivity matrix, with elements aR
i;j equal to the weight of the edge between nodes i and j in neighboring

rows, and AC is the column connectivity matrix, with elements aC
i;j equal to the weight of the edge between nodes i and j in

neighboring columns.
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Lemma 4. Submatrix AðnÞp;q, on position ðp; qÞwithin the nth tropical power of systolic array’s adjacency matrix A�n can be obtained
using the following iterative formula:
AðnÞp;q ¼ Aðn�1Þ
p;q AR � Aðn�1Þ

p;q�1AC ; ð9Þ
where Að1Þp;q ¼ Ap;q, and AkAl denotes a tropical product AkAl ¼ Ak � Al.
Recurrence relation holds true for n ¼ 1 if we choose Að0Þp;p ¼ I and Ap;q ¼ 1 for p – q.
Proof. We will prove the lemma using mathematical induction. Substituting n ¼ 2 in (9), using the properties given in (8),
we obtain following submatrices
As

1;1 ¼ A1;1AR � A1;0AC ¼ As

R ;

As

1;2 ¼ A1;2AR � A1;1AC ¼ ACAR � ARAC ;

As

1;3 ¼ A1;3AR � A1;2AC ¼ As

C ;

. . .
The same equalities are obtained substituting (8) into the definition of the tropical matrix multiplication (5), which proves
the Eq. (9) for n ¼ 2.

Let (9) holds for n ¼ k, i.e.
AðkÞp;q ¼ Aðk�1Þ
p;q AR � Aðk�1Þ

p;q�1AC :
Let the number of submatrices in a column of the matrix given with (8) be N. According to Lemma 1, we obtain ðkþ 1Þth
iteration as
Aðkþ1Þ
p;q ¼a

N

i¼1
AðkÞp;i � Ai;q

� �
;

where only two sum members are not equal to 1, namely Ai;q ¼ AR for i ¼ q, and Ai;q�1 ¼ AC for i ¼ q� 1 (8), thus
Aðkþ1Þ
p;q ¼ AðkÞp;qAq;q � AðkÞp;q�1Aq�1;q ¼ AðkÞp;qAR � AðkÞp;q�1AC ;
which proves the lemma for n > 1.
For n ¼ 1 we have
Að1Þp;p ¼ Að0Þp;pAR � Að0Þp;p�1AC ¼ I � AR �1� AC ¼ AR;

Að1Þp;pþ1 ¼ Að0Þp;pþ1AR � Að0Þp;pAC ¼ 1� AR � I � AC ¼ AC ;

Að1Þp;q ¼ Að0Þp;qAR � Að0Þp;q�1AC ¼ 1� AR �1� AC ¼ 1;
which proves the lemma. h

According to the structure of the matrix Að0Þ we can interpret it as a matrix of the paths of the length 0.
Lemma 4 gives an iterative algorithm for computation of nth tropical power of adjacency matrix. In order to obtain the

shortest path matrix SðGEÞ, in the respect to Lemma 3, we will obtain the form of particular submatrices AðnÞp;q on the typical
positions within the nth tropical power A�n of the matrix A given with Eq. (8).

Lemma 5

(i) For n 2 N, matrix A�n ¼ AðnÞp;q

h i
has the following property, if p� q ¼ p1 � q1 then AðnÞp;q ¼ AðnÞp1 ;q1

.
(ii) If p > q we have AðnÞp;q ¼ 1.
(iii) For p ¼ 1; . . . ;N, we have
AðnÞp;p ¼ A�nR : ð10Þ
Proof

(i) We will prove that matrix A�n ¼ AðnÞp;q

h i
has the given structure using mathematical induction. The statement is

obviously true for n ¼ 1. Assume that it is true for n ¼ k. Then for p� q ¼ p1 � q1 we have
AðkÞp;q ¼ AðkÞp1 ;q1
:

Assume that p� q ¼ p1 � q1. According to Lemma 4 we have
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Aðkþ1Þ
p;q ¼ AðkÞp;qAR � AðkÞp;q�1AC

Aðkþ1Þ
p1 ;q1

¼ AðkÞp1 ;q1
AR � AðkÞp1 ;q1�1AC :
According to our hypothesis p� q ¼ p1 � q1, and induction hypothesis that p� q ¼ p1 � q1 implies
AðkÞp;q ¼ AðkÞp1 ;q1

; p� qþ 1 ¼ p1 � q1 þ 1 implies AðkÞp;q�1 ¼ AðkÞp1 ;q1�1, we have
Aðkþ1Þ
p;q ¼ AðkÞp;qAR � AðkÞp;q�1AC ¼ AðkÞp1 ;q1

AR � AðkÞp1 ;q1�1AC ¼ Aðkþ1Þ
p1 ;q1
which finishes inductive proof.
(ii) The statement is obviously true for n ¼ 1. If p > q, using (9), and the fact that x�1 ¼ 1, the submatrices right below
the main diagonal are
AðnÞp;q ¼ Aðn�1Þ
p;q AR � Aðn�1Þ

p;q�1AC ¼ 1� ARð Þ � 1� ACð Þ ¼ 1:

(iii) The statement is obviously true for n ¼ 1. Using previous statement, we have

AðnÞp;p ¼ Aðn�1Þ
p;p AR � Aðn�1Þ

p;p�1AC ¼ Aðn�1Þ
R � AR

� �
� 1� ACð Þ ¼ A�nR : �
Lemma 6. The shortest path matrix SðGÞ, of graph G whose adjacency matrix AðGEÞ is given with (8) is of the following form
SðGEÞ ¼

S0 S1 S2 � � � Sn�1

1 S0 S1 Sn�2

1 1 S0 Sn�3

..

. . .
.

1 1 1 S0

2
66666664

3
77777775

nxn

: ð11Þ
Proof. According to Lemma 5, we can represent matrix A�n in the following form A�n ¼ AðnÞq�p

h i
, where we used notation

AðnÞq�p ¼ AðnÞp;q since all AðnÞp;q are the same for the same difference q� p, and the same n. Using Lemma 3, we have
SðGEÞ ¼a
þ1

n¼1
A�n ¼a

þ1

n¼1
AðnÞq�p

h i
¼ a

þ1

n¼1
AðnÞq�p

" #
¼ Sq�p
	 


:

For p > q we have AðnÞq�p ¼ 1, and accordingly
Sq�p ¼a
1

n¼1
AðnÞq�p ¼a

1

n¼1
1 ¼1:
h

Theorem 1. The submatrix Sm of the shortest paths matrix SðGÞ can be computed using an iterative formula
Sm ¼ Sm�1AC ; ð12Þ
where starting matrix for m ¼ 0 is the shortest paths submatrix that lays on the diagonal of the matrix S, i.e. for p ¼ q
S0 ¼a
1

i¼1
A�iR : ð13Þ
Proof. Elements of the submatrix Sm, according to Lemma 3, are
Sm ¼a
1

i¼1
AðiÞm : ð14Þ
For m ¼ 0 we have
S0 ¼a
1

i¼1
AðiÞ0 :
As Að1Þ0 has zeros on the main diagonal, it follows that S0 has zeros on the main diagonal as well. Hence, S0 � I ¼ S0.
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Substituting (9) into (14) we obtain
Fig. 2.
systolic
Sm ¼a
1

i¼1
Aði�1Þ

m AR � Aði�1Þ
m�1 AC

� �

¼a
1

i¼1
Aði�1Þ

m AR �a
1

i¼1
Aði�1Þ

m�1 AC

¼a
1

i¼0
AðiÞm AR �a

1

i¼0
AðiÞm�1AC

¼ Að0Þm AR �a
1

i¼1
AðiÞm AR

 !

� Að0Þm�1AC �a
1

i¼1
AðiÞm�1AC

 !
For m P 2 we have Að0Þm ¼ Að0Þm�1 ¼ 1, so that previous equation becomes
Sm ¼ SmAR � Sm�1AC : ð15Þ
Let m ¼ 1. We have
S1 ¼ S1AR � S0AC � AC ¼ S1AR � S0 � Ið ÞAC ¼ S1AR � S0AC ;
so that we obtain previous equation for m ¼ 1. Let m ¼ 0. We have
S0 ¼ S0AR � S�1AC � AR ¼ S�1AC � S0 � Ið ÞAR ¼ S0AR � S�1AC ;
so that we obtain previous equation for m ¼ 0.
As shortest paths matrix remains the shortest paths matrix after tropical matrix product, thus Eq. (15) can be rewritten as
Sm ¼ Sm�1AC : ð16Þ
which proves Eq. (12).
The submatrix S0 from (13) can be obtained from AðnÞp;p ¼ A�nR , substituting (10) into (14). h

Theorem 1 gives a simple iterative formula for the shortest paths matrix computation of a given regular systolic array,
which presents the error distances between nodes in the architecture. Color-coded ESM of regular systolic array can be sim-
ply obtained by rewriting the corresponding error distances of the matrix SðGEÞ from (11) into a matrix form that fits the
topology of the array. The computation of CCESM will be illustrated in the next section on the example of PDT hexagonal
systolic multiplier design.

5. Example of PDT hexagonal systolic multiplier design

A hexagonal 4-bit integer systolic multiplier is shown in Fig. 2. Fig. 2a shows the multiplication algorithm. The systolic
array is shown in Fig. 2b, while 2c illustrates functions of a node.
(a)

(c)

(b)

Hexagonal 4-bit integer systolic multiplier: (a) multiplication algorithm, (b) hexagonal systolic array for multiplication, (c) functions of a node of the
array.
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A suitable metric for the design of the PDT hexagonal systolic multiplier is Euclidian metric, in which the system fault can
be defined as
dEðAt;AerrÞ > DE ¼ 2L�a � 1; ð17Þ
where L is a total bits in the system output, and a represents allowed error threshold. In other words, if a ¼ L, then all bits
must be correct, and if a ¼ 0, then the system can tolerate any error magnitude.

Let the potential error source be the combinatoric logic of the node. Hence, the erroneous product piþ1 can propagate and
cause the error of the same magnitude in the node within the next row, i.e. D ¼ 20. If error occurs in the carry bit, then the
error will cause an error in the partial product with D ¼ 21 greater weight than the weight of the node that produced the
error. The EPG G is shown in Fig. 3. The edge labels in Fig. 3 represent the exponents of the errors, i.e. D ¼ 2wi;j .

We will give the general form of the submatrices Sm of the EPG from Fig. 3, in the respect to the Eq. (11), within the
following lemma.

Lemma 7. The submatrix Sm of the shortest paths matrix SðGEÞ of graph GE from Fig. 3, has the following form
Sm ¼

m mþ 1 � � � mþ N � 1

..

.

2 3 2þ N � 1
1 2 1þ N � 1
0 1 N � 1
..
.

1 1 � � � m

2
6666666666664

3
7777777777775

NxN

; ð18Þ
i.e., the elements of the matrix Sm are
sm
i;j ¼

j� iþm; i 6 jþm
1; other

�
: ð19Þ
Proof. Adjacency matrix AðGEÞ of the graph GE shown in Fig. 3 is
ð20Þ
According to (8) the matrices AR and AC are
AR ¼

0 1 1 � � � 1 1
1 0 1 1 1
1 1 0 1 1
..
. . .

.

1 1 1 0 1
1 1 1 1 0

2
6666666664

3
7777777775

NxN

AC ¼

1 1 1 � � � 1 1
0 1 1 1 1
1 0 1 1 1
..
. . .

.

1 1 1 1 1
1 1 1 0 1

2
6666666664

3
7777777775

NxN

: ð21Þ



Fig. 3. Error propagation graph of hexagonal 4-bit integer multiplier array for Euclidian metric.
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Using the definition of tropical matrix product (4) and the form of the matrix AR given in Eq. (21), the elements of the matrix
A�nR ¼ ½rðnÞi;j � are
rðnÞi;j ¼
j� i; i 6 j

1; other

�
: ð22Þ
We will prove the lemma by mathematical induction. Substituting (22) into (13) we obtain
s0
i;j ¼

j� i; i 6 j

1; other

�
; ð23Þ
which is equal to (19) for m ¼ 0.
Let the following expression stands
sk
i;j ¼

j� iþ k; i 6 jþ k

1; other

�
: ð24Þ
Using Theorem 1 we obtain Skþ1 ¼ SkAC , i.e, from the definition of matrix multiplication in the tropical algebra (4) we obtain
skþ1
i;j ¼a

N

l¼1
sk

i;l � cl;j; ð25Þ
where ci;j is an element of the matrix AC on the position ði; jÞ. The element cl;j ¼ 0 for l ¼ jþ 1, in each column of the matrix AC

except the last, the tropical sum (25) can be reduced to only one sum member, namely
skþ1
i;j ¼ sk

i;jþ1 � 0 ¼ sk
i;jþ1 ¼

ðjþ 1Þ � iþ k; i 6 ðjþ 1Þ þ k

1; other

�
:

For the last column, where cN;N ¼ 1, the sum (25) becomes
skþ1
i;N ¼a

N

l¼1
sk

i;l � cl;N ¼ sk
i;N � 1 ¼

ðN � iþ kÞ þ 1; i 6 N þ k

1; other

�
:

As index i is always less than N, and k P 0, none of the elements from the last column of skþ1
i;N is equal to 1. Thus, the last

equation can be rewritten as
skþ1
i;N ¼

ðN � iþ kÞ þ 1; i 6 N þ kþ 1
1; other

¼ ðN � iþ kÞ þ 1
�

;

which proves the lemma h

The shortest paths matrix contains all shortest paths within the graph G from Fig. 3. Only the paths that end to the most
significant output vertex, which is denoted as v15 in Fig. 3, are of the interest in forming the CCESM. The weights of those
paths will indicate the error influence of particular node into the overall system output. Let CCESM be a matrix
MCC ¼ ½mCC

i;j �, where the value of the element mCC
i;j represents the influence of node ði; jÞ on the output word, in the case of

error. From (18) it can be shown that for the architecture from Fig. 2 the following lemma stands.
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Lemma 8. The elements of the matrix MCC ¼ ½mCC
i;j � of graph GE from Fig. 2 are of the following form
mCC
i;j ¼ N þ i� j; ð26Þ
where ði; jÞ 2 f0;1; . . . ;N � 1g2.

For example, the CCESM of the architecture from Fig. 2b is
MCC ¼

4 3 2 1
5 4 3 2
6 5 4 3
7 6 5 4

2
6664

3
7775: ð27Þ
In words, mCC
0;3 ¼ 1 means that defective array node on corresponding position will cause an error DE ¼ 21 in output word,

while defective node v7 (Fig. 3), where mCC
2;1 ¼ 5 will cause the error DE ¼ 25 in output word.

Information contained within the CCESM can be used to visualize vulnerable part of the array in the form of ESM for given
error threshold. Let the PDT partition of the architecture be described using regular ESM matrix Ma ¼ mi;j, where mi;j ¼ 1 if
corresponding array node belongs to the vulnerable part of the architecture, and mi;j ¼ 0 if not. From (17) and (26) we obtain
mi;j ¼
1; a P N � iþ j

0; other

�
: ð28Þ
For example, if the systolic array from Fig. 2b is tolerant only to errors less than 26, then a ¼ 2, and the vulnerable part of the
architecture is obtained from (27) as
M2 ¼

0 0 0 0
0 0 0 0
1 0 0 0
1 1 0 0

2
6664

3
7775: ð29Þ
The PDT architecture that is tolerant to errors less than 26 is shown in Fig. 4. Gray nodes 11;14, and 15 are FT nodes.

6. Complexity reduction analysis

The CCESM given in (27) could be obtained using traditional algorithms, as well. One of well-known algorithms is Floyd–
Warshall algorithm [19]. Let sk

i;j be the cost of the path from the node v i to the node v j that passes through exactly k other
nodes. Floyd–Warshall algorithm is a recursive algorithm of the following form
sk
i;j ¼

wi;j; k ¼ 0;

min sk�1
i;j ; sk�1

i;k þ sk�1
k;j

� �
; other

(
:

Let T be the total number of array cells (T ¼ N2). The Floyd–Warshall algorithm compares all possible paths through the
graph between each pair of vertices. It is able to do this with OðT3Þ comparisons.

Using tropical iterative algorithm proposed in Theorem 1, the number of required comparisons can be significantly
reduced.

Lemma 9. The number of required comparisons for iterative algorithm given by Eqs. (12) and (13) is OðT2Þ.
Fig. 4. PDT hexagonal systolic multiplier tolerant to errors less than 26.



524 V. Ciric et al. / Applied Mathematics and Computation 225 (2013) 512–525
Proof. First, we will obtain the number of comparisons required to compute the matrix S0, given in (13). The total number of
rows and columns in matrix AR, according to (21), is N. The number of required comparisons for computation of one element
of the matrix As

R , according to (4), is N. The total number of elements within the matrix is N2, thus, computation of As

R

requires N � N2 ¼ N3 comparisons.
In order to obtain S0, according to (13), the Nth tropical power of the matrix AR is required, so previously analyzed

computation should be repeated N � 1 times, which gives the total of ðN � 1Þ � N � N2 comparisons.
The matrix S1 can be obtained, according to (12), as tropical product of matrices S0 and AC , which requires N3

comparisons. The matrices Si; i ¼ 2;3; . . . ;N, can be obtained in the same manner, requiring ðN � 1Þ � N3 comparisons.
The total number of comparisons is the number of comparisons required for computation of S0, plus the number of

comparisons required for computation of the matrices Si; i ¼ 1;2; . . . N, i.e.
Table 1
Compar

N [m

F-W
Prop

Table 2
Implem

N

4
8
16
ðN � 1ÞN3 þ ðN � 1ÞN3 ¼ 2ðN � 1ÞN3;
which proves the lemma. h

The lemma shows that complexity of the proposed algorithm is slightly more than T times reduced, which can be signif-
icant, especially in nanoarchitectures with 108 and more components [2].

The computational complexity in obtaining error significance maps is reduced in comparison to traditional algorithms by
customizing the topology of starting graph in tropical algebra according to the typical topology of systolic arrays. The fact
that systolic arrays have connected cells in neighboring rows and columns only is used in (8), and built in (10), which led
to the simple iterative algorithm (12).

We implemented both Floyd–Warshall and proposed algorithm in C programing language, using gcc 4:6 compiler on
Linux 2:6 kernel, and executed them on Intel P4@3.0 GHz with 512 MB of RAM, for different values of parameter N, while
measuring the execution time. The obtained results are given in Table 1.

7. FPGA implementation results

In order to illustrate the tradeoffs enabled by partial application of fault tolerance on the array presented in Section 5, we
choose a TMR as a FT scheme to be applied in PDT hexagonal systolic multiplier implementation.

For the sake of comparison, the PDT multiplier (Fig. 4), is described in VHDL as parameterized core and implemented on
Virtex4 FPGA. Equations (12) and (13) are implemented as VHDL functions, which in conjunction with parameter a return
ESM (28). Using the design automation described in VHDL, the only parameter which has to be set, regardless the array
dimensions, is the error threshold (a).

We implemented three arrays with different parameter sets. The parameter sets for the implemented arrays are given in
Table 2. The arrays differ in number of columns/rows (N), and in error threshold. For each implemented array three param-
eters are given: the number of cells (#), FPGA resources usage, given in kilogates (kG), and the percentage of cells that belong
to the vulnerable part of the array (%). For example, if the array consists of N ¼ 8 rows, then the total number of the result
bits is L ¼ 16. If the error threshold is a ¼ 0, then the total number of required cells is 8 � 8 ¼ 64 (Table 2). If the error thresh-
old is a ¼ 4, then 0:16% of the array belongs to the vulnerable part of the array. Thus, if we apply triple modular redundancy
to the vulnerable part of the array, we obtain the array with ð0:16 � 64Þ � 3þ ð1� 0:16Þ � 64 � 1 ¼ 84 cells (Table 2).

Let the probability of having a defective cell within the multiplier arrays from Table 2 be denoted as p, and let T be the
total number of the array cells (T ¼ N2). In the same manner as proposed in [11] we can obtain function that shows
probabilities for different array sizes where PDT design can introduce the yield improvement (YPDT ) in comparison to the reg-
ular array, for the same error tolerance (YET ). The function is given in Fig. 5. From Fig. 5 it can be noticed that PDT design is
preferable as the number of array cells is increased.
ison of times required for execution of the well-known Floydv–Warshall and the proposed iterative algorithm.

s] 4 16 256 1024

alg 0.005 0.079 387.195 22,641.609
osed 0.002 0.009 1.676 25.916

entation results of hexagonal multipliers with different setting of a.

a=L ¼ 0 0.25 0.50 0.75 1.0

# Res. [kG] % # Res. [kG] % # Res. [kG] % # Res. [kG] # Res. [kG]

16 0.35 0.19 22 0.40 0.62 36 0.53 0.93 46 0.59 48 0.60
64 1.36 0.16 84 1.93 0.56 136 2.17 0.90 180 2.33 192 2.40
256 5.19 0.14 328 5.75 0.53 528 7.46 0.89 712 9.06 768 9.55



Fig. 5. A function which gives the defect probability for which the PDT design can introduce yield improvement.
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8. Conclusions

In this paper we proposed the application of tropical algebra in systolic array analysis, due to the fact that it is more
descriptive and convenient to use in graph analysis than traditional algebra. We investigated the properties of tropical
algebra as a mathematical framework in error propagation analysis in systolic arrays. Using the properties of systolic arrays
in tropical algebra, we developed simple iterative algorithm for shortest path computation of regular systolic arrays. It is
shown that the computational complexity of the proposed algorithm is reduced from OðT3Þ to OðT2Þ, where T is the number
of array cells. The results are used to form color-coded error significance map of the array, which contains all information
about defects influence in output result. The proposed technique gives a general solution for computation of defect influence
in output result of array topologies. The proposed method was defined and described in details through the set of definitions
and lemmas. An example of tropical algebra analysis and design of partially defect tolerant hexagonal systolic multiplier
were given. The execution speed of the proposed algorithm was given, as well as VHDL/FPGA implementation of basic
multiplier and partially defect tolerant multiplier, designed using the proposed method.
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